Shadow Ratio of Hypergraphs with Bounded Degree

نویسندگان

چکیده

Abstract We study the size of shadow k -uniform hypergraphs with bounded degree. Lower bounds on ratio and hypergraph are given as a function degree bound . show that cliques extremal for long range bounds, but not every bound. give general, sharp lower show, sometimes we can get by deleting disjoint maximal matchings from clique

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Independent Sets in Bounded-Degree Hypergraphs

In this paper we analyze several approaches to the Maximum Independent Set (MIS) problem in hypergraphs with degree bounded by a parameter ∆. Since independent sets in hypergraphs can be strong and weak, we denote by MIS (MSIS) the problem of finding a maximum weak (strong) independent set in hypergraphs, respectively. We propose a general technique that reduces the worst case analysis of certa...

متن کامل

3-Uniform hypergraphs of bounded degree have linear Ramsey numbers

Chvátal, Rödl, Szemerédi and Trotter [1] proved that the Ramsey numbers of graphs of bounded maximum degree are linear in their order. We prove that the same holds for 3-uniform hypergraphs. The main new tool which we prove and use is an embedding lemma for 3-uniform hypergraphs of bounded maximum degree into suitable 3-uniform ‘pseudo-random’ hypergraphs. keywords: hypergraphs; regularity lemm...

متن کامل

k-forested choosability of graphs with bounded maximum average degree

A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...

متن کامل

On Ryser's Conjecture for $t$-Intersecting and Degree-Bounded Hypergraphs

A famous conjecture (usually called Ryser’s conjecture) that appeared in the PhD thesis of his student, J. R. Henderson, states that for an r-uniform r-partite hypergraph H, the inequality τ(H) 6 (r − 1)·ν(H) always holds. This conjecture is widely open, except in the case of r = 2, when it is equivalent to Kőnig’s theorem, and in the case of r = 3, which was proved by Aharoni in 2001. Here we ...

متن کامل

Hypergraphs of Bounded Disjointness

A k-uniform hypergraph is s-almost intersecting if every edge is disjoint from exactly s other edges. Gerbner, Lemons, Palmer, Patkós and Szécsi conjectured that for every k, and s > s0(k), every k-uniform s-almost intersecting hypergraph has at most (s + 1) ( 2k−2 k−1 ) edges. We prove a strengthened version of this conjecture and determine the extremal graphs. We also give some related result...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2023

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-023-02634-y